Tutorial HEC Ras Puentes
* The preview only display some random pages of manuals. You can download
full content via the form below.
The preview is being generated... Please wait a
moment!
- Submitted by: Marcial Flores Zúñiga
- File size: 2.2 MB
- File
type: application/pdf
- Words: 1,733
- Pages: 56
Report / DMCA this file
Add to bookmark
Description
Bridges
2 Types of Flow @ Bridges • Low Flow - Flow where the water surface does not reach the low beam • High Flow - Flow where the water surface reaches the deck or higher • There are sub-types for both low and high flow • Often both types of flow occur in single simulation with different profiles
May, 1999
HEC-RAS FY99
2 of 56
Low Flow
May, 1999
HEC-RAS FY99
3 of 56
Low Flow Bridge Modeling 3 Types of Flow
Class A Low Flow - Subcritical Class B Low Flow - Passes through critical depth Class C Low Flow - Supercritical
May, 1999
HEC-RAS FY99
4 of 56
Low Flow Bridge Hydraulics 4 methods of modeling Energy - physically based, accounts for friction
losses and geometry changes through bridge, as well as losses due to flow transition & turbulence. Momentum - physically based, accounts for friction losses and geometry changes through bridge. FHWA WSPRO - energy based as well as some empirical attributes. Developed for bridges that constrict wide floodplains with heavily vegetated overbank areas. Subcritical flow only. Yarnell - empirical formula developed to model effects of bridge piers. Subcritical flow only. May, 1999
HEC-RAS FY99
5 of 56
Low Flow Bridge Hydraulics Appropriate Methods Bridge piers are small obstruction to flow, friction losses predominate - Energy, Momentum, or WSPRO Pier and friction losses predominate - Momentum Flow passes through critical depth in vicinity of bridge - Energy or Momentum Pier losses are dominant - Yarnell Supercritical flow without piers - Energy or Momentum Supercritical flow with piers - Momentum
May, 1999
HEC-RAS FY99
6 of 56
Low Flow Bridge Modeling Class A Low Flow - Energy Method • Friction losses are computed as length times average friction slope. • Energy losses are empirical coefficient times change in velocity head (expansion and contraction losses). • Does not account for pier drag forces.
May, 1999
HEC-RAS FY99
7 of 56
Low Flow Bridge Modeling Class A Low Flow - Momentum Method • Friction losses are external skin friction = wetted perimeter times length times shear stress. • Requires entering coefficient of drag for piers, CD • Check “Options” menu under “Bridge & Culvert Data” window for momentum equation options. Usually accept program defaults
May, 1999
HEC-RAS FY99
8 of 56
Low Flow Bridge Modeling CD Coefficients for Piers Circular Pier Elongated piers with semi circular ends Elliptical piers with 2:1 length to width Elliptical piers with 4:1 length to width Elliptical piers with 8:1 length to width Square nose piers Triangular nose with 30 degree angle Triangular nose with 60 degree angle Triangular nose with 90 degree angle Triangular nose with 120 degree angle May, 1999
HEC-RAS FY99
1.20 1.33 0.60 0.32 0.29 2.00 1.00 1.39 1.60 1.72 9 of 56
Low Flow Bridge Modeling Class A Low Flow - Yarnell Equation • Based on 2,600 lab experiments on different pier shapes • Requires entering pier shape coefficient, K • Should only be used where majority of losses are due to piers.
May, 1999
HEC-RAS FY99
10 of 56
Low Flow Bridge Modeling Yarnell’s Pier Coefficient, K Semi-circular nose and tail Twin-cylinder piers with connecting diaphragm Twin-cylinder piers without diaphragm 90 degree triangular nose and tail Square nose and tail Ten pile trestle bent May, 1999
HEC-RAS FY99
0.90 0.95 1.05 1.05 1.25 2.50 11 of 56
Low Flow Bridge Modeling Class A Low Flow - WSPRO • Federal Highway Administrations method of analyzing bridges • Uses energy equation in an iterative procedure
May, 1999
HEC-RAS FY99
12 of 56
Low Flow Bridge Modeling Class A Low Flow - Summary • Energy & Momentum equations are appropriate for most bridges • Yarnell should only be used when piers are the major obstacles to flow • Yarnell cannot be used when there are no piers • Conservative approach is to select all methods and use highest energy loss
May, 1999
HEC-RAS FY99
13 of 56
High Flow - Pressure
May, 1999
HEC-RAS FY99
14 of 56
High Flow - Pressure
May, 1999
HEC-RAS FY99
15 of 56
High Flow - Pressure & Weir
May, 1999
HEC-RAS FY99
16 of 56
High Flow Bridge Modeling • When bridge deck is a small obstruction to the flow and not acting like a pressurized orifice, use energy method. • When overtopped and tailwater is not submerging flow, use pressure/weir method. • When overtopped and highly submerged, use energy method.
May, 1999
HEC-RAS FY99
17 of 56
High Flow - Weir Flow 3
Q CLH 2 Q = Total flow over the weir C = Coefficient of discharge for weir flow (~2.5 to 3.1 for free flow) L = Effective length of the weir H = Difference between energy elev. upstream and road crest Default Max Submergence = 0.95 (95%) (see next slide) After max submergence reached, program reverts to energy equation for solution. May, 1999
HEC-RAS FY99
18 of 56
High Flow - Submergence Qsubmerged Q free Reduction Factor H2 Submergenc e H1
Default Max Submergence = 0.95 (95%) (see next slide) After max submergence reached, program reverts to the energy equation for the solution. May, 1999
HEC-RAS FY99
19 of 56
High Flow - Submergence
May, 1999
HEC-RAS FY99
20 of 56
Adding the Bridge
May, 1999
HEC-RAS FY99
21 of 56
Adding the Bridge Select the Brdg/Culv button from the geometry data window:
May, 1999
HEC-RAS FY99
22 of 56
Adding the Bridge This brings up the Bridge Culvert Data window:
May, 1999
HEC-RAS FY99
23 of 56
Adding the Bridge From the options menu, select “Add a Bridge and/or Culvert”:
May, 1999
HEC-RAS FY99
24 of 56
Adding the Bridge This brings up a window asking for the river station of the bridge. It will locate the bridge numerically between crosssections:
May, 1999
HEC-RAS FY99
25 of 56
Adding the Bridge This brings up a window with the adjacent upstream and downstream cross-sections plotted:
May, 1999
HEC-RAS FY99
26 of 56
Adding the Bridge Next, select the Deck/Roadway button from the Bridge data window:
May, 1999
HEC-RAS FY99
27 of 56
Adding the Bridge Notice the weir coefficient and max submergence window are showing the default values:
May, 1999
HEC-RAS FY99
28 of 56
Adding the Bridge
May, 1999
HEC-RAS FY99
29 of 56
Adding the Bridge Enter the data for the required values. Note that the U.S. and D.S. sideslopes are for cosmetic purposes only unless using the WSPRO method for low flow:
May, 1999
HEC-RAS FY99
30 of 56
Adding the Bridge Use the “Copy Up to Down” button to repeat the stationhigh chord-low chord data from the upstream to the downstream side, if applicable:
May, 1999
HEC-RAS FY99
31 of 56
Adding the Bridge After selecting OK from the bridge deck window, it replots the U.S. and D.S. xsections showing the bridge deck:
May, 1999
HEC-RAS FY99
32 of 56
Adding the Bridge Piers can be added by selecting the Pier button from the bridge data window:
May, 1999
HEC-RAS FY99
33 of 56
Adding the Bridge This brings up the Pier Data Editor where you can add the data for the pier(s) :
May, 1999
HEC-RAS FY99
34 of 56
Adding the Bridge The pier is then shown graphically on the plot:
May, 1999
HEC-RAS FY99
35 of 56
Adding the Bridge The modeling options, including low flow and high flow modeling methods, are available by selecting the Bridge Modeling Approach button:
May, 1999
HEC-RAS FY99
36 of 56
Adding the Bridge This brings up Bridge Modeling Approach Editor window. Notice the option to compute each type of low flow method and the option to select which one you use:
May, 1999
HEC-RAS FY99
37 of 56
Adding the Bridge
See following graph Orifice Coef. between 0.7 and 0.9
May, 1999
HEC-RAS FY99
38 of 56
High Flow - Orifice Discharge
May, 1999
HEC-RAS FY99
39 of 56
Adding the Bridge There are several other options in the options menu from the bridge data window …
May, 1999
HEC-RAS FY99
40 of 56
Adding the Bridge … as well as the view menu:
May, 1999
HEC-RAS FY99
41 of 56
Adding the Bridge The geometric data schematic is also updated automatically:
May, 1999
HEC-RAS FY99
42 of 56
Locating Cross-Sections Near Bridges
May, 1999
HEC-RAS FY99
43 of 56
Cross-Sections Near Bridges
May, 1999
HEC-RAS FY99
44 of 56
Cross-Sections Near Bridges
May, 1999
HEC-RAS FY99
45 of 56
Cross-Sections Near Bridges
May, 1999
HEC-RAS FY99
46 of 56
Cross-Sections Near Bridges
Fc2 5 1.8 10 Q ER 0.421 0.485 Fc1 May, 1999
HEC-RAS FY99
47 of 56
Cross-Sections Near Bridges
Fc2 nob Qob 1.86 CR 1.4 0.333 0.19 Q Fc1 nc 2
May, 1999
HEC-RAS FY99
48 of 56
0.5
Cross-Sections Near Bridges Rule of Thumb: ER = 2:1
CR = 1:1
May, 1999
HEC-RAS FY99
49 of 56
Bridge Cross Sections
May, 1999
HEC-RAS FY99
50 of 56
Bridge Cross Sections
May, 1999
HEC-RAS FY99
51 of 56
Bridge Cross Sections Example Computation of Le and Lc HEC-RAS 2.0
Given: Fully expanded flow top width at Cross Section 1 = 300 feet Fully expanded flow top width at Cross Section 4 = 250 feet Distance from Point B to Point C (bridge opening width) = 40 feet Find:
Recommended locations of Cross Sections 1 and 4
Le = 2 * (300 – 40) / 2 = 260 feet downstream of bridge Lc = 1 * (250 – 40) / 2 = 105 feet upstream of bridge
This assumes ER=2 and CR=1
May, 1999
HEC-RAS FY99
52 of 56
Expansion & Contraction Coefficients
Contraction Expansion No Transition 0 0 Gradual Transition 0.1 0.3 Typical Bridge Transition 0.3 0.5 Abrupt Transition 0.6 0.8
May, 1999
HEC-RAS FY99
53 of 56
Bridge Modeling Expansion and Contraction Coefficients at the 4 cross-sections for a bridge (example) Expansion Contraction Cross-Section 4 (furthest US) Cross-Section 3 Cross-Section 2 Cross-Section 1(furthest DS)
May, 1999
HEC-RAS FY99
0.5 0.5 0.5 0.3
0.3 0.3 0.3 0.1
54 of 56
Ineffective Flows
At XS’s 2 & 3
May, 1999
HEC-RAS FY99
55 of 56
The End
May, 1999
HEC-RAS FY99
56 of 56